Novus Light Home

Blog

Apple baths

How long do you inspect an apple at the store before it ends up in your basket? Today’s consumers expect their food products to be high quality on a consistent basis. That’s why companies such as Ocean Optics are using advanced optical sensing tools and analytics to improve the quality of food for consumers, and the quality of solutions for food processors and sorting machine manufacturers.

Historically, food sorting has been managed manually, relying on the expertise of workers to judge quality visually. The introduction of machine vision systems, optical scanning and spectroscopy has added a much deeper level of understanding and analysis. For example, some spectrometers can “see” inside a fruit peel to determine fat, protein or water content, or to spot internal browning, rot or bruising.

New tools such as machine learning add another layer of analytical capability. For example, by fusing spectroscopy with advanced statistical models and machine learning architecture, immediate benefits can be realized for different groups within the supply chain: the sorting machine integrators seeking more precise and reliable analytical offerings; the food processors striving for more efficient facilities; and consumers wanting to be confident they are eating what they expect.

Date fruit sorting

Dates have been a popular fruit since biblical times. Consumers know exactly the kind of date they want: not too wet and not too dry.

Ocean Optics was approached by Lugo Machinery & Innovation, a leading supplier of fresh produce sorting products based in Israel, to improve their manual method of sorting dates by moisture. Their goals were simple: first, to automate the sorting process to eliminate all manual inspection; next, to perform the measurements rapidly; and last, to make the measurements non-destructively. Additionally, Lugo’s timeline was very short, with only four months until date season, and they had no prior experience with spectroscopy.

date sorting

Feasibility tests were performed on date samples from Lugo, which quickly showed NIR correlations to moisture levels in the fruit, helping to determine the choice of systemThis setup was used onsite to analyze a much larger sample set, then used for training data to develop proprietary machine learning algorithms.

Lugo was aware of date moisture response between 850-900 nm and imagined the analysis would focus solely in that region. But based on our experience analyzing other fruits and vegetables, we extended the analytical range to include broader patterned spectral features, to help us develop machine learning algorithms. This approach -- broadband versus discrete wavelength spectral analysis – yields more accurate results and makes the data less susceptible to deviations related to optical interference.

Diving deeper into data with machine learning

Applied analytics also factored into the Lugo date sorting project. Having shown the robustness of algorithms developed earlier, as well as their predictive accuracy, Lugo integrated the spectral platform into a conveyor-belt system with the algorithms running on a devoted PC. The architecture of this sorting system scans each date and weighs over 12 potential correlation models, ultimately “voting” on the best model and generating the output in milliseconds. Classification methods were valuable in this application, which required broader threshold decisions versus precise numerical outputs; some of these methods include k-nearest neighbors (k-NN), Gaussian, and polynomial. The method toolbox is evolving to include regression models for accurate quantified outputs, which is invaluable to those working in process streams looking for impurities from any number of sources.

By drawing mathematical correlations between absorbance and concentration trends we have taken the first step toward advanced understanding. As these correlations evolve from linear fits to more complex functions, understanding is further advanced, and as these complex functions begin to account for multiple species, we advance further still. But at some point, a wall is hit; at some point there are so many interconnected inputs working to generate so many outputs that traditional deconvolution methods become daunting if not impossible.

Introducing machine learning to the fruit sorting process brings a deeper level of analysis that is not relying on the human eye and perception but is rather folding its fingers through every digital bit of data, statistically analyzing the entire data array of each spectrometer scan at every pixel on the detector. This system can now see abnormalities previously missed and develop smarter, more streamlined correlations for far more intertwined variables.

One of the most powerful aspects of machine learning is the ability of non-experts to introduce new training sets to the system and achieve results previously attainable only to experts in the field. This creates the freedom to develop beyond the initial product capabilities without the cost of an expert for such expansions and evolutions. With these new tools, what was once highly intimidating and restricted is now entirely approachable to many levels of users.

Various communication interfaces are available to work with PLCs and common process equipment. In our case study, Lugo and Ocean Optics engineered the spectrometer module to communicate with the system PLC for triggering action to a valve that steered the dates in the right direction (appropriate moisture category). This functioning system created a beta platform to refine and optimize the algorithms before final implementation.

Applied insight at work

Today, the fully integrated system scans 5 dates per second and is entirely automated. This has reduced overhead costs, improved safety and allowed the customer to focus on refining other aspects of the sorting process. Also, with advanced statistical models now established, the customer will be able to develop additional analyses without the need for modeling expertise.

With the fusion of spectroscopy, statistical modelling and machine learning architecture, sorting machine integrators and food processors can build more efficient sorting and grading systems.

Written by Derek Guenther, Senior Application Scientist, Ocean Optics

Labels: Ocean Optics,food sorting,spectroscopy

Back Back to Enlightening Applications

Illuminating Products

Copyright © 2024 Novus Media Today Group, LLC. All rights reserved. Website design and build by MM Design.